همگرایی گرانشی باعث ایجاد ۱۲ تصویر تکراری از یک کهکشان در آسمان شد!

آیا تابه‌حال درباره همگرایی گرانشی (Gravitational lensing) شنیده‌اید؟ اخیرا در تصاویر گرفته شده با تلسکوپ فضایی هابل، لکه‌های نوری مشاهده شده است که به هیچ‌وجه ناشی از لنزهای خود تلسکوپ نیستند. اینها در واقع نورهای یک کهکشان دور در فاصله ۱۱ میلیارد سال نوری از ما هستند که به‌وسیله گرانش یک خوشه کهکشانی موجود در پیش‌زمینه آن منحرف گردیده و چندین بار تکرار شده‌اند.

در اثر این پدیده، حداقل ۱۲ تصویر تکراری از کهکشان PSZ1 G311.65-18.48 که به Sunburst Arc هم معروف است در آسمان شکل گرفته است. به لطف این پدیده، ستاره‌شناسان می‌توانند کهکشان مذکور را با جزییات بیشتر مطالعه کنند.

گرانش، نیروی جاذبه فوق‌العاده قوی و مرموزی است که قابل دیدن نیست و بر همه اجرام کیهان متناسب با جرم‌شان وارد می‌شود. هرچه قدر جرم یک شی بیشتر باشد، نیروی گرانش یا جاذبه آن قوی‌تر است. این نیرو فقط اجرام فیزیکی را جذب نمی‌کند، بلکه به اندازه‌ای قوی‌ست که حتی می‌تواند مسیر نور را نیز منحرف کند.

در مقیاس کهکشانی، این گفته بدین معنی است که توده‌ای عظیم با گرانش زیاد، مثل یک خوشه کهکشانی، می‌تواند نور جرمی را که در پشت آن و در فاصله دوری قرار دارد، خم کرده و بزرگنمایی کند.

به این وضعیت که توسط انیشتین هم پیش‌بینی شده بود، همگرایی گرانشی گفته می‌شود. ستاره‌شناسان، به‌طور پیوسته، از این پدیده برای مطالعه کهکشان‌هایی استفاده می‌کنند که در مراحل ابتدایی کیهان شکل گرفته‌اند و به قدری کم‌نور هستند که نمی‌توان آنها را به خوبی رصد کرد.

این اثر همگرایی گرانشی حتی می‌تواند تصاویر را تکرار کند و چندین کپی از یک کهکشان دور و کم‌نور را ایجاد نماید. این همان چیزی است که ما در تصاویر کهکشان Sunburst Arc مشاهده می‌کنیم؛ هرچند که تعداد کپی‌های آن بیش از حد معمول است.

بین ما و این کهکشان که در فاصله ۴.۶ میلیارد سال نوری قرار دارد، یک خوشه کهکشانی بسیار سنگین وجود دارد که نور Sunburst Arc را خم کرده و آن را به چندین کمانه تقسیم می‌کند. حداقل ۱۲ کپی از این کهکشان، در تصویر هابل ظاهر گردیده که بین چهار کمان اصلی تقسیم شده‌اند؛ سه کمان در بالا سمت راست و یک کمان در پایین سمت چپ تصویر.

به‌خاطر قدرتمند بودن همگرایی گرانشی، کهکشان Sunburst Arc حتی با وجود فاصله زیادش از ما، یکی از درخشان‌ترین کهکشان‌های همگراشده است. تعدادی از کپی‌های آن، ۱۰ تا ۳۰ برابر درخشان‌تر از خود کهکشان هستند که همین موضوع به ستاره‌شناسان اجازه می‌دهد تا ساختارهایی به عرض ۵۲۰ سال نوری را بررسی کنند.

این اندازه شاید برای ما کمی بزرگ به نظر برسد؛ اما برخی از نواحی شکل‌گیری ستاره‌ها و سحابی‌ها، به‌راحتی می‌توانند در چنین عرض‌هایی گسترده شوند. دانشمندان سپس این ساختارها را با کهکشان‌های جوان‌تر مقایسه می‌کنند تا به نحوه دگرگونی کهکشان‌ها در طول زمان پی ببرند.

تصاویر هابل همچنین نشان می‌دهند که Sunburst Arc، بسیار شبیه به اولین کهکشان‌های کیهان در دوره بازیونیده شدن (Epoch of Reionisation)، در حدود ۱۳.۳ تا ۱۲.۸ میلیارد سال قبل است.

تقریبا ۳۰۰ هزار سال بعد از بیگ بنگ، کیهان با گاز هیدروژن پر شده بود و کاملا مات و کدر به نظر می‌رسید. سپس اتفاقی می‌افتد که باعث یونیزه شدن هیدروژن می‌شود و کیهان را روشن و شفاف می‌کند.

دیدن چیزهایی که از آن دوره باقی مانده‌اند بسیار سخت است، بنابراین یافتن مکانیسم‌های دقیقی که در آن بازه زمانی اتفاق افتاده‌اند بسیار کار دشواری خواهد بود.

ستاره‌شناسان فکر می‌کنند که تابش صورت‌گرفته از اولین ستارگان و کهکشان‌ها باعث یونیزه شدن گاز هیدروژن شده است؛ اما یک مشکل در این میان وجود دارد: تابش انرژی بالا، که برای یونیزه کردن هیدروژن لازم بود، باید می‌توانست بدون آنکه توسط فضای بین‌ستاره‌ای جذب گردد از کهکشان‌ها فرار کند. مشخص شده است که فقط تعداد کمی از کهکشان‌ها قادر به این کار بوده‌اند.

با این‌حال، کهکشان Sunburst Arc دارای سرنخ‌هایی است که نشان می‌دهند برخی از فوتون‌های آن توانسته‌اند از طریق کانال‌های باریکی در فضای خنثایی که مملو از گاز زیادی بوده است، فرار کنند.

هر چقدر که ما دانش خود را درباره دوره بازیونیده شدن بیشتر می‌کنیم، به نظر می‌رسد که عوامل زیادی در پیدایش آن دخیل بوده‌اند. بعید است راهی که فوتون‌های کهکشان Sunburst Arc از طریق آن به بیرون فرار کرده‌اند به‌تنهایی علت آن بوده باشد؛ اما می‌توانسته است یکی از عوامل مهم تسهیل‌کننده آن بوده باشد.

نتایج این تحقیق در مجله Science چاپ شده است.

نوشته همگرایی گرانشی باعث ایجاد 12 تصویر تکراری از یک کهکشان در آسمان شد! اولین بار در اخبار تکنولوژی و فناوری پدیدار شد.

همگرایی گرانشی باعث ایجاد ۱۲ تصویر تکراری از یک کهکشان در آسمان شد!

آیا تابه‌حال درباره همگرایی گرانشی (Gravitational lensing) شنیده‌اید؟ اخیرا در تصاویر گرفته شده با تلسکوپ فضایی هابل، لکه‌های نوری مشاهده شده است که به هیچ‌وجه ناشی از لنزهای خود تلسکوپ نیستند. اینها در واقع نورهای یک کهکشان دور در فاصله ۱۱ میلیارد سال نوری از ما هستند که به‌وسیله گرانش یک خوشه کهکشانی موجود در پیش‌زمینه آن منحرف گردیده و چندین بار تکرار شده‌اند.

در اثر این پدیده، حداقل ۱۲ تصویر تکراری از کهکشان PSZ1 G311.65-18.48 که به Sunburst Arc هم معروف است در آسمان شکل گرفته است. به لطف این پدیده، ستاره‌شناسان می‌توانند کهکشان مذکور را با جزییات بیشتر مطالعه کنند.

گرانش، نیروی جاذبه فوق‌العاده قوی و مرموزی است که قابل دیدن نیست و بر همه اجرام کیهان متناسب با جرم‌شان وارد می‌شود. هرچه قدر جرم یک شی بیشتر باشد، نیروی گرانش یا جاذبه آن قوی‌تر است. این نیرو فقط اجرام فیزیکی را جذب نمی‌کند، بلکه به اندازه‌ای قوی‌ست که حتی می‌تواند مسیر نور را نیز منحرف کند.

در مقیاس کهکشانی، این گفته بدین معنی است که توده‌ای عظیم با گرانش زیاد، مثل یک خوشه کهکشانی، می‌تواند نور جرمی را که در پشت آن و در فاصله دوری قرار دارد، خم کرده و بزرگنمایی کند.

به این وضعیت که توسط انیشتین هم پیش‌بینی شده بود، همگرایی گرانشی گفته می‌شود. ستاره‌شناسان، به‌طور پیوسته، از این پدیده برای مطالعه کهکشان‌هایی استفاده می‌کنند که در مراحل ابتدایی کیهان شکل گرفته‌اند و به قدری کم‌نور هستند که نمی‌توان آنها را به خوبی رصد کرد.

این اثر همگرایی گرانشی حتی می‌تواند تصاویر را تکرار کند و چندین کپی از یک کهکشان دور و کم‌نور را ایجاد نماید. این همان چیزی است که ما در تصاویر کهکشان Sunburst Arc مشاهده می‌کنیم؛ هرچند که تعداد کپی‌های آن بیش از حد معمول است.

بین ما و این کهکشان که در فاصله ۴.۶ میلیارد سال نوری قرار دارد، یک خوشه کهکشانی بسیار سنگین وجود دارد که نور Sunburst Arc را خم کرده و آن را به چندین کمانه تقسیم می‌کند. حداقل ۱۲ کپی از این کهکشان، در تصویر هابل ظاهر گردیده که بین چهار کمان اصلی تقسیم شده‌اند؛ سه کمان در بالا سمت راست و یک کمان در پایین سمت چپ تصویر.

به‌خاطر قدرتمند بودن همگرایی گرانشی، کهکشان Sunburst Arc حتی با وجود فاصله زیادش از ما، یکی از درخشان‌ترین کهکشان‌های همگراشده است. تعدادی از کپی‌های آن، ۱۰ تا ۳۰ برابر درخشان‌تر از خود کهکشان هستند که همین موضوع به ستاره‌شناسان اجازه می‌دهد تا ساختارهایی به عرض ۵۲۰ سال نوری را بررسی کنند.

این اندازه شاید برای ما کمی بزرگ به نظر برسد؛ اما برخی از نواحی شکل‌گیری ستاره‌ها و سحابی‌ها، به‌راحتی می‌توانند در چنین عرض‌هایی گسترده شوند. دانشمندان سپس این ساختارها را با کهکشان‌های جوان‌تر مقایسه می‌کنند تا به نحوه دگرگونی کهکشان‌ها در طول زمان پی ببرند.

تصاویر هابل همچنین نشان می‌دهند که Sunburst Arc، بسیار شبیه به اولین کهکشان‌های کیهان در دوره بازیونیده شدن (Epoch of Reionisation)، در حدود ۱۳.۳ تا ۱۲.۸ میلیارد سال قبل است.

تقریبا ۳۰۰ هزار سال بعد از بیگ بنگ، کیهان با گاز هیدروژن پر شده بود و کاملا مات و کدر به نظر می‌رسید. سپس اتفاقی می‌افتد که باعث یونیزه شدن هیدروژن می‌شود و کیهان را روشن و شفاف می‌کند.

دیدن چیزهایی که از آن دوره باقی مانده‌اند بسیار سخت است، بنابراین یافتن مکانیسم‌های دقیقی که در آن بازه زمانی اتفاق افتاده‌اند بسیار کار دشواری خواهد بود.

ستاره‌شناسان فکر می‌کنند که تابش صورت‌گرفته از اولین ستارگان و کهکشان‌ها باعث یونیزه شدن گاز هیدروژن شده است؛ اما یک مشکل در این میان وجود دارد: تابش انرژی بالا، که برای یونیزه کردن هیدروژن لازم بود، باید می‌توانست بدون آنکه توسط فضای بین‌ستاره‌ای جذب گردد از کهکشان‌ها فرار کند. مشخص شده است که فقط تعداد کمی از کهکشان‌ها قادر به این کار بوده‌اند.

با این‌حال، کهکشان Sunburst Arc دارای سرنخ‌هایی است که نشان می‌دهند برخی از فوتون‌های آن توانسته‌اند از طریق کانال‌های باریکی در فضای خنثایی که مملو از گاز زیادی بوده است، فرار کنند.

هر چقدر که ما دانش خود را درباره دوره بازیونیده شدن بیشتر می‌کنیم، به نظر می‌رسد که عوامل زیادی در پیدایش آن دخیل بوده‌اند. بعید است راهی که فوتون‌های کهکشان Sunburst Arc از طریق آن به بیرون فرار کرده‌اند به‌تنهایی علت آن بوده باشد؛ اما می‌توانسته است یکی از عوامل مهم تسهیل‌کننده آن بوده باشد.

نتایج این تحقیق در مجله Science چاپ شده است.

نوشته همگرایی گرانشی باعث ایجاد 12 تصویر تکراری از یک کهکشان در آسمان شد! اولین بار در اخبار تکنولوژی و فناوری پدیدار شد.

دامنه اطلاعات ما از جهان هستی به کجا محدود خواهد شد؟

در این مطلب قصد داریم به برخی سوالات کاربردی درباره جهان هستی بپردازیم. سوالاتی که قطعا برای هرکدام از ما پیش آمده است. سوالاتی چون فراتر از کیهان چه چیزی وجود دارد؟ جهان ما در حال تبدیل شدن به چه چیزی است؟ آیا جهان هستی تا ابد منبسط خواهد شد؟آیا مرزی برای دانش انسان وجود دارد؟ آیا محدودیت‌های اساسی در مسیر علم قرار دارد؟

اگر شما نیز مشتاق به فهم پاسخ این سوالات هستید بهتر است تا انتهای این مقاله با گویا آی تی همراه باشید.

در پاسخ به تمامی این سوالات باید گفت ما هنوز هیچ پاسخی برای این سوالات نداریم و نمی توانیم به طور قطعی بگوییم که آیا حد و مرزی برای دانش ما وجود دارد یا خیر. اما می توان گفت به نظر نمی رسد مرزی برای دانسته های ما وجود ندارد. هرچند فراز و نشیب های بیشماری در مسیر یادگیری ما قرار گرفته اند اما هنوز به قطعیت نمی توان نظری در این باره داد. البته هستند افرادی که معتقدند ما هیچ وقت به علم پیدایش جهان دست نخواهیم یافت و هیچ زمان نخواهیم فهمید که پیش از انفجار بزرگ چه اتفاقی رخ داده است. اما به نظر می رسد این تفکرات کمی خودخواهانه باشد زیرا هیچ کس مرز دانش انسان را نمی داند و همانطور که یافته های امروز ما از نجوم در ۵۰ سال پیش غیر ممکن به نظر می رسید ما نیز نمی توانیم به قطعیت بگوییم که تا چه میزان فرا خواهیم گرفت.

how-much-more-can-we-learn-about-the-universe2

البته این صحبت به آن معنا نخواهد بود که ما در طبیعت محدودیتی نداریم زیرا ما در مشاهده و مطالعه ی طبیعت محدودیت هایی داریم به عنوان مثال  اصل عدم قطعیت هایزنبرگ بیان می کند که نمی‌ توان تمام مشخصات حرکتی یک ذره را در هر لحظه از زمان دانست. همچنین بیشترین فاصله ‌ای که در یک بازه ‌ی زمانی قادر به دیدن و حرکت در آن هستیم توسط سرعت نور محدود شده است. اما این محدودیت‌ها صرفا به نشان دهنده این است که چه چیزی را نمی‌ توانیم مشاهده کنیم، نه اینکه چه چیزی را نمی ‌توانیم یاد بگیریم. علیرغم وجود اصل عدم قطعیت، ما توانسته ‌ایم مکانیک کوانتوم را توسعه دهیم و یا در زمینه بررسی رفتار اتم‌ ها پیش رفت هایی چشمگیر داشته باشیم. ما امروزه توانسته‌ ایم ذرات به اصطلاح مجازی را کشف کنیم. ذراتی که نمی ‌توانیم به طور مستقیم ببینیم، با این حال به وسیله شواهد و قوانین فیزیکی وجود آنها را پیش ‌بینی می ‌کنیم.

این موضوع که جهان در حال انبساط است به عنوان یک نقطه شروع در علم ما جای می گیرد و اگر با ما تکیه بر دانسته ها و اکتشافات جدید خود و همچنین استنتاج حوادث پیرامون مان پیش برویم خواهیم توانست به نقطه ای بسیار دور در تاریخ گذشته هستی برسیم. به زمانی که تمام عالم هستی در نقطه ای قابل رویت جمع شده بود.

در یک لحظه، که اکنون آن را  لحظه‌ ی انفجار بزرگ (Big Bang)  می نامیم ، قوانین فیزیکی فعلی شناخته شده از هم فرو‌پاشید، چون بین نسبیت عام و مکانیک کوانتوم ناسازگاری به وجود آمد. نسبیت عام به توصیف گرانش می ‌پردازد و مکانیک کوانتوم نیز فیزیک ذرات میکروسکوپی است. اما خیلی از دانشمندان این ناسازگاری را یک محدودیت جدی برای علم نمی ‌دانند، چون ما انتظار داریم که اصل نسبیت عام بعد از تصحیح، به بخشی از تئوری کوانتوم پیوسته تبدیل شود. نظریه‌ ی ریسمان نمونه ‌ای از این تلاش ‌ها است.

how-much-more-can-we-learn-about-the-universe3

با تصور چنین نظریه ‌ای، شاید قادر باشیم به این سوال پاسخ دهیم که قبل از انفجار بزرگ چه اتفاقی رخ داده است. البته این موضوع نیز قابل تامل است که شاید پیش از انفجار بزرگ اصلا هیچ چیزی وجود نداشته باشد. ساده ‌ترین پاسخ مطرح شده در مورد انفجار بزرگ، کمترین میزان مقبولیت را در بین دانشمندان داشته است. پاسخ به این شکل است که در لحظه‌ ی انفجار بزرگ نسبیت عام با نسبیت خاص به هم پیوستند تا یک حقیقت واحد را تشکیل دهند: فضازمان. اگر فضا توسط انفجار بزرگ به وجود آمده باشد، شاید زمان هم به همین ترتیب به وجود آمده باشد. در آن صورت، هیچ “’گذشته‌ای” وجود نداشته است و سوال مطرح شده بی مورد خواهد بود. بنابراین و با توجه به این موضوع باید منتظر یک جواب منطبق بر کوانتوم گرانشی باشیم و پس از اثبات آن فرضیه به شکل آزمایشگاهی خواهیم توانست خواهیم توانست پاسخی جدید و قابل اتکا ارائه دهیم.

درادامه با یک سوال دیگر مواجه هستیم و آن این است که مرزهای کیهان ما درکجا قرار دارد؟ گستردگی جهان ما تا کجا ادامه دارد؟ در واقع باید گفت پاسخ این سوالات نیز هنوز برای بشر مبهم است و برای پاسخ به آن تنها به حدس و گمان هایی ساده اکتفا نموده ایم که آن را با شما درمیان می گذاریم.

همانطور که گفتیم فضا و زمان به صورت خود به خودی و به یکباره در اثر انفجار بزرگ پدید آمده اند پس می توان گفت که انرژی کلی آن ها برابر صفر است. بر اساس اصول پایه ای فیزیک می توان گفت که انرژی موجود در غالب یک جرم با انرژی میدان گرانشی آن برابر است. به زبان ساده تر باید بگوییم مجموع مقادیر چیزی که از هیچ پدید آمده است باید همان هیچ باشد. با توجه به علم فعلی ما تنها جهانی قادر به دارا بودن چینی ویژگی هایی است که شکل هندسی آن گرد باشد. به عنوان مثال وقتی بر روی یک کره حرکت می کنیم با هیچ مرزی مواجه نخواهیم شد اما می دانیم که محدودیت هایی برای آن وجود دارد. همین شرایط می ‌تواند در جهان هم صادق باشد. اگر ما به انداز‌ه‌ ی کافی در یک جهت به دوردست نگاه کنیم، می‌ توانیم قسمت پشت سر خود را ببینیم.

how-much-more-can-we-learn-about-the-universe4

اما در عمل ما قادر به انجام چنین کاری نیستیم  و دلیل آن احتمالا می تواند این موضوع باشد که جهان قابل رویت ما خود بخشی از جهان بزرگتریست که ما توانایی دیدن آن را نداریم. علت این امر باید با آنچه که انبساط جهان (inflation) نامیده می ‌شود در ارتباط باشد. بیشتر جهان‌هایی که خود به خود از انداز‌ه‌ی میکروسکوپی به وجود می ‌آیند، به جای آن که برای میلیاردها سال عمر کنند، در یک زمان میکروسکوپیک از هم فرو می ‌پاشند. اما در بعضی موارد،  انرژی دادن به فضای خالی باعث می ‌شود که جهان در یک بازه‌ ی زمانی کوتاه به صورت تصاعدی متورم شود. بر این اساس تصور ما این است که در لحظات اولیه ی پس از انفجار بزرگ یک بازه زمانی پدید آمده است که در آن جهان انبساط می یابد و به این طریق جهان بلافاصله پس از تولد فرو نپاشیده است.

بنابراین می توانیم بگوییم که ممکن است زمانی انبساط در بخشی از جهان که ما در آن حضور داریم متوقف شود اما به این معنا نیست که تمام جهان از انبساط  خارج شده است.

 

منبع NAUTIL

دامنه اطلاعات ما از جهان هستی به کجا محدود خواهد شد؟

در این مطلب قصد داریم به برخی سوالات کاربردی درباره جهان هستی بپردازیم. سوالاتی که قطعا برای هرکدام از ما پیش آمده است. سوالاتی چون فراتر از کیهان چه چیزی وجود دارد؟ جهان ما در حال تبدیل شدن به چه چیزی است؟ آیا جهان هستی تا ابد منبسط خواهد شد؟آیا مرزی برای دانش انسان وجود دارد؟ آیا محدودیت‌های اساسی در مسیر علم قرار دارد؟

اگر شما نیز مشتاق به فهم پاسخ این سوالات هستید بهتر است تا انتهای این مقاله با گویا آی تی همراه باشید.

در پاسخ به تمامی این سوالات باید گفت ما هنوز هیچ پاسخی برای این سوالات نداریم و نمی توانیم به طور قطعی بگوییم که آیا حد و مرزی برای دانش ما وجود دارد یا خیر. اما می توان گفت به نظر نمی رسد مرزی برای دانسته های ما وجود ندارد. هرچند فراز و نشیب های بیشماری در مسیر یادگیری ما قرار گرفته اند اما هنوز به قطعیت نمی توان نظری در این باره داد. البته هستند افرادی که معتقدند ما هیچ وقت به علم پیدایش جهان دست نخواهیم یافت و هیچ زمان نخواهیم فهمید که پیش از انفجار بزرگ چه اتفاقی رخ داده است. اما به نظر می رسد این تفکرات کمی خودخواهانه باشد زیرا هیچ کس مرز دانش انسان را نمی داند و همانطور که یافته های امروز ما از نجوم در ۵۰ سال پیش غیر ممکن به نظر می رسید ما نیز نمی توانیم به قطعیت بگوییم که تا چه میزان فرا خواهیم گرفت.

how-much-more-can-we-learn-about-the-universe2

البته این صحبت به آن معنا نخواهد بود که ما در طبیعت محدودیتی نداریم زیرا ما در مشاهده و مطالعه ی طبیعت محدودیت هایی داریم به عنوان مثال  اصل عدم قطعیت هایزنبرگ بیان می کند که نمی‌ توان تمام مشخصات حرکتی یک ذره را در هر لحظه از زمان دانست. همچنین بیشترین فاصله ‌ای که در یک بازه ‌ی زمانی قادر به دیدن و حرکت در آن هستیم توسط سرعت نور محدود شده است. اما این محدودیت‌ها صرفا به نشان دهنده این است که چه چیزی را نمی‌ توانیم مشاهده کنیم، نه اینکه چه چیزی را نمی ‌توانیم یاد بگیریم. علیرغم وجود اصل عدم قطعیت، ما توانسته ‌ایم مکانیک کوانتوم را توسعه دهیم و یا در زمینه بررسی رفتار اتم‌ ها پیش رفت هایی چشمگیر داشته باشیم. ما امروزه توانسته‌ ایم ذرات به اصطلاح مجازی را کشف کنیم. ذراتی که نمی ‌توانیم به طور مستقیم ببینیم، با این حال به وسیله شواهد و قوانین فیزیکی وجود آنها را پیش ‌بینی می ‌کنیم.

این موضوع که جهان در حال انبساط است به عنوان یک نقطه شروع در علم ما جای می گیرد و اگر با ما تکیه بر دانسته ها و اکتشافات جدید خود و همچنین استنتاج حوادث پیرامون مان پیش برویم خواهیم توانست به نقطه ای بسیار دور در تاریخ گذشته هستی برسیم. به زمانی که تمام عالم هستی در نقطه ای قابل رویت جمع شده بود.

در یک لحظه، که اکنون آن را  لحظه‌ ی انفجار بزرگ (Big Bang)  می نامیم ، قوانین فیزیکی فعلی شناخته شده از هم فرو‌پاشید، چون بین نسبیت عام و مکانیک کوانتوم ناسازگاری به وجود آمد. نسبیت عام به توصیف گرانش می ‌پردازد و مکانیک کوانتوم نیز فیزیک ذرات میکروسکوپی است. اما خیلی از دانشمندان این ناسازگاری را یک محدودیت جدی برای علم نمی ‌دانند، چون ما انتظار داریم که اصل نسبیت عام بعد از تصحیح، به بخشی از تئوری کوانتوم پیوسته تبدیل شود. نظریه‌ ی ریسمان نمونه ‌ای از این تلاش ‌ها است.

how-much-more-can-we-learn-about-the-universe3

با تصور چنین نظریه ‌ای، شاید قادر باشیم به این سوال پاسخ دهیم که قبل از انفجار بزرگ چه اتفاقی رخ داده است. البته این موضوع نیز قابل تامل است که شاید پیش از انفجار بزرگ اصلا هیچ چیزی وجود نداشته باشد. ساده ‌ترین پاسخ مطرح شده در مورد انفجار بزرگ، کمترین میزان مقبولیت را در بین دانشمندان داشته است. پاسخ به این شکل است که در لحظه‌ ی انفجار بزرگ نسبیت عام با نسبیت خاص به هم پیوستند تا یک حقیقت واحد را تشکیل دهند: فضازمان. اگر فضا توسط انفجار بزرگ به وجود آمده باشد، شاید زمان هم به همین ترتیب به وجود آمده باشد. در آن صورت، هیچ “’گذشته‌ای” وجود نداشته است و سوال مطرح شده بی مورد خواهد بود. بنابراین و با توجه به این موضوع باید منتظر یک جواب منطبق بر کوانتوم گرانشی باشیم و پس از اثبات آن فرضیه به شکل آزمایشگاهی خواهیم توانست خواهیم توانست پاسخی جدید و قابل اتکا ارائه دهیم.

درادامه با یک سوال دیگر مواجه هستیم و آن این است که مرزهای کیهان ما درکجا قرار دارد؟ گستردگی جهان ما تا کجا ادامه دارد؟ در واقع باید گفت پاسخ این سوالات نیز هنوز برای بشر مبهم است و برای پاسخ به آن تنها به حدس و گمان هایی ساده اکتفا نموده ایم که آن را با شما درمیان می گذاریم.

همانطور که گفتیم فضا و زمان به صورت خود به خودی و به یکباره در اثر انفجار بزرگ پدید آمده اند پس می توان گفت که انرژی کلی آن ها برابر صفر است. بر اساس اصول پایه ای فیزیک می توان گفت که انرژی موجود در غالب یک جرم با انرژی میدان گرانشی آن برابر است. به زبان ساده تر باید بگوییم مجموع مقادیر چیزی که از هیچ پدید آمده است باید همان هیچ باشد. با توجه به علم فعلی ما تنها جهانی قادر به دارا بودن چینی ویژگی هایی است که شکل هندسی آن گرد باشد. به عنوان مثال وقتی بر روی یک کره حرکت می کنیم با هیچ مرزی مواجه نخواهیم شد اما می دانیم که محدودیت هایی برای آن وجود دارد. همین شرایط می ‌تواند در جهان هم صادق باشد. اگر ما به انداز‌ه‌ ی کافی در یک جهت به دوردست نگاه کنیم، می‌ توانیم قسمت پشت سر خود را ببینیم.

how-much-more-can-we-learn-about-the-universe4

اما در عمل ما قادر به انجام چنین کاری نیستیم  و دلیل آن احتمالا می تواند این موضوع باشد که جهان قابل رویت ما خود بخشی از جهان بزرگتریست که ما توانایی دیدن آن را نداریم. علت این امر باید با آنچه که انبساط جهان (inflation) نامیده می ‌شود در ارتباط باشد. بیشتر جهان‌هایی که خود به خود از انداز‌ه‌ی میکروسکوپی به وجود می ‌آیند، به جای آن که برای میلیاردها سال عمر کنند، در یک زمان میکروسکوپیک از هم فرو می ‌پاشند. اما در بعضی موارد،  انرژی دادن به فضای خالی باعث می ‌شود که جهان در یک بازه‌ ی زمانی کوتاه به صورت تصاعدی متورم شود. بر این اساس تصور ما این است که در لحظات اولیه ی پس از انفجار بزرگ یک بازه زمانی پدید آمده است که در آن جهان انبساط می یابد و به این طریق جهان بلافاصله پس از تولد فرو نپاشیده است.

بنابراین می توانیم بگوییم که ممکن است زمانی انبساط در بخشی از جهان که ما در آن حضور داریم متوقف شود اما به این معنا نیست که تمام جهان از انبساط  خارج شده است.

 

منبع NAUTIL