چگونه یک تلسکوپ گذشته را می‌بیند؟!

چگونه یک تلسکوپ گذشته را می‌بیند؟!

برای فهمیدن این موضوع که یک تلسکوپ چگونه در زمان سفر کرده و از گذشته خبر می‌دهد، با یک مثال ساده شروع می‌کنیم. هنگامی‌که ما به خورشید خیره می‌شویم. البته خیره شدن به خورشید هرگز ایده جالبی نیست اما اگر به نور انتشاریافته از خورشید نگاه کنیم، این نور 8 دقیقه قبل از خورشید ساطع شده است.

موضوع جالبی است، نه؟ ما در آینده زندگی می‌کنیم! البته آینده‌ای برای ساکنان سایر کهکشان‌ها.

متأسفانه ما لحظات هیجان‌انگیز جهان را قبل از شخص دیگری تجربه نمی‌کنیم. ما بسیار دورتر از آن هستیم که بدانیم در همین لحظه چه اتفاقی در خورشید رخ می‌دهد. نور بالاترین سرعت در جهان هستی را دارد و با سرعتی معادل 300000 هزار کیلومتر بر ساعت حرکت می‌کند.

این سرعت بالایی است و به‌عنوان مثال هنگامی‌که لامپ اتاق خود را روشن می‌کنید، نیازی به انتظار کشیدن برای نور نیست و اگر بخواهیم دقیق‌تر باشیم، این انتظار آن‌قدر ناچیز است که نادیده گرفته می‌شود. خورشید 150 میلیون کیلومتر با زمین فاصله دارد و نور آن برای رسیدن به زمین باید مسافت طولانی را طی کند. بنابراین ما همیشه خورشید را در 8 دقیقه قبل مشاهده می‌کنیم و اگر خورشید به ناگهان خاموش شود، ما انسان‌ها بر روی زمین تا 8 دقیقه متوجه این موضوع نخواهیم شد!

البته می‌توان گفت که خورشید بسیار به ما نزدیک است. اگر از طریق یک تلسکوپ به نزدیکترین ستاره به خودمان یعنی «آلفا قنطورس» نگاهی بیندازیم، درواقع شکل ظاهری مربوط به آن در 4.2 میلیون سال قبل را می‌نگریم.

ستاره آلفا قنطورس

تلسکوپی مانند هابل، به وضعیت 100 میلیون سال قبل کهکشان‌ها نگاه می‌کند. درحالی‌که خورشید تنها 8 دقیقه پیرتر از آن چیزی است که ما می‌بینیم، این اختلاف بین ما و کهکشان می‌تواند به بیش از 100 میلیون سال برسد. این بدان معنی است که اگر ما اکنون در کهکشانی در 100 میلیون سال دورتر بودیم و به زمین نگاه می‌کردیم، می‌توانستیم نسل دایناسورها را بر روی کره خاکی خود ببینیم!

نوشته چگونه یک تلسکوپ گذشته را می‌بیند؟! اولین بار در پدیدار شد.

چرا جو خورشید از سطح آن داغ تر است؟

ناسا یکی از قدیمی ترین اسرار خورشید را حل کرده است. تصاویر ارسال شده از رصدخانه فضایی ناسا به حل معمایی که باعث سردرگمی دانشمندان از دهه ۴۰ میلادی شده کمک کرده است: چرا جو بیرونی خورشید، یعنی کرونای آن، داغ تر از سطح قابل رویت آن است؟

گویا آی تی – ما از یک اختلاف دمای اندک صحبت نمی کنیم. در سطح قابل مشاهده خورشید یک دمای سوزان حدود ۵۵۰۰ درجه سانتیگراد وجود دارد (یا ۹۹۳۲ درجه فارنهایت)، اما در بالای تاج کرونای خورشیدی دما حدود ۲۰۰ الی ۵۰۰ برابر داغ تر است.

اکنون، پژوهشگران ناسا بر اساس مشاهدات کاوشگر IRIS(طیف‌نگار تصویر‌برداری منطقه واسط) تصور می کنند که کرونا تا حدودی توسط انفجار “بمب های گرمایی” داغ می شود، این بمب ها توسط جریان های انرژی شدید میدان های مغناطیسی پدید می آیند که حرکت متقاطع داشته و دوباره در کرونا به هم می پیوندند.
این موضوع می تواند به این پرسش پاسخ دهد که آیا کرونا به طور یکنواخت و ناگهان گرم می شود و یا این که توده های جداگانه ای است که به سرعت در جو بالایی پخش می شوند — چیزی که دانشمندان از زمان کشف گرمای شدید کرونا در پی دانستن آن بوده اند.
کاوشگر IRIS پی بردن به این موضوع را آسان تر می کند زیرا قادر است تا منطقه انتقال خورشیدی را تجزیه و تحلیل کند – این منطقه بین سطح خورشید و کرونا قرار دارد – و می تواند حرکت گاز داغ را با جزئیات بی سابقه ای اندازه گیری کند.

پائولا تستا، پژوهشگر ارشد مرکز فیزیک نجومی هاروارد ـ اسمیتسونین توضیح می دهد، ” به دلیل این که IRIS می تواند منطقه انتقال و تحول خورشیدی را ۱۰ برابر بهتر از ابزارهای قبلی تجزیه کند، ما قادر هستیم تا حرکت نواسانی مواد داغ را در میدان مغناطیسی زیر تاج خورشیدی مشاهده کنیم. این موضوع با مدل های دانشگاه اسلو سازگار است، که در آن اتصال مجدد مغناطیسی باعث انفجار بمب های داغ در کرونای خورشیدی می شود.”
این اتصال مجدد مغناطیسی، که گرما و انرژی در آن آزاد می شود، مسئول پدیده های دیگری همچون زبانه های خورشیدی است.
از سال ۲۰۱۳ که IRIS پرتاب شده، و به نوعی همانند یک ذره بین برای مطالعه کناره های های جو خورشید عمل می‌کند، توانسته است دیدگاه بهتری نسبت به این نوع از فعالیت خورشیدی به ما ارائه کند.
دمای خورشید

قبلاً، پژوهشگران از تصاویر ارسالی IRIS برای یافتن شواهدی از زبانه های خورشیدی کوچک به نام نانو زبانه استفاده می کردند، که در آن خورشید از طریق ارسال پلاسمای داغی که به جو بالایی آن برخورد می کند انرژی آزاد می کند.
مشاهدات نانو زبانه ها توسط داده های ارسالی ماهواره دیگر ناسا با نام EUNIS (یا طیف نگار برخورد طبیعی فرابنفش شدید) پشتیبانی می شوند.
حالا ما می توانیم به لطف چشمان تیزبین IRIS، فعالیت های انفجاری میدان مغناطیسی را نیز به این داده ها اضافه کنیم.
یکی از موارد جدیدی که این پژوهش می تواند در روی زمین به ما کمک کند این است که می تواند تصور بهتری از زمان روی دادن طوفان های خورشیدی به ما ارائه کند – رویدادهایی که به واسطه فوران های قدرتمند انرژی خورشیدی قادر هستند اختلالات جدی بر روی سیاره ما ایجاد کنند.
پژوهش در زمینه جوش هسته ای نیز بر فهم کامل از چگونگی فعالیت های خورشیدی متکی است. اگر ما بخواهیم منابع انرژی پاک، ایمن و تقریباً نامحدود تولید کنیم، باید اطلاعات بیشتری درباره واکنش های شیمیایی خورشید به دست بیاوریم.

بارت دو پونتی، فیزیکدان نجومی از آزمایشگاه فیزیک نجومی و خورشیدی لاکهیلد مارتین می گوید که فناوری IRIS در آینده نیز همچنان داده های بسیار بهتری را در مقایسه با چیزی که دانشمندان قبلاً مجبور به کار با آن بودند را ارائه خواهد کرد.
او می گوید، ” مشکل گرمای کرونا شامل فرآیندهای متعدد فیزیکی پیچیده ای است که سنجش مستقیم یا وارد کردن آنها در مدل های تئوری دشوار است.”